Multi-time-step Chance Constrained Generation Re-dispatch

Scott Backhaus, Russell Bent, Daniel Bienstock, Misha Chertkov

Columbia University, LANL

FERC Software Converence 2014

Organization

1 Review: chance-constrained OPF

2 Extension: Robustness

3 Extension: Multi-time-step formulation

Review of past work: chance-constrained DC OPF

- CIGRE '09: large unexpected fluctuations in wind power can cause additional flows through the transmission system (grid)
- Large power deviations in renewables must be balanced by other sources, which may be far away
- Flow reversals may be observed control difficult
- A solution expand transmission capacity! Difficult (expensive), takes a long time
- Problems already observed when renewable penetration high

CIGRE -International Conference on Large High Voltage Electric Systems '09

- "Fluctuations" 15-minute timespan
- Due to turbulence ("storm cut-off")
- Variation of the same order of magnitude as mean
- Most problematic when renewable penetration starts to exceed 20 30%
- Many countries are getting into this regime

Experiment

Bonneville Power Administration data, Northwest US

- data on wind fluctuations at planned farms
- with standard OPF, 7 lines exceed limit $\geq 8\%$ of the time

DC-OPF:

min c(p) (a quadratic)

s.t.

$$B\theta = p - d \tag{1}$$

$$|\beta_{ij}(\theta_i - \theta_j)| \le u_{ij}$$
 for each line ij (2)

$$P_g^{min} \leq p_g \leq P_g^{max}$$
 for each generator g (3)

Notation:

 $p = \text{vector of generations } \in \mathbb{R}^n, \quad d = \text{vector of loads } \in \mathbb{R}^n$ $B \in \mathbb{R}^{n \times n}, \quad \text{(bus susceptance matrix)}$

- $m{\mathcal{F}}=\mathsf{set}$ of renewable sources, e.g. wind farms
- $\Delta \omega_j$ = real-time fluctuation in output of renewable j (deviation from mean).

- $m{\mathcal{F}}=\mathsf{set}$ of renewable sources, e.g. wind farms
- $\Delta \omega_j$ = real-time fluctuation in output of renewable j (deviation from mean).

For each generator i, two parameters:

- $\overline{p_i} = \text{mean output}$
- lacktriangle α_i = response parameter ("participation factor")

Real-time output of generator i:

$$p_i = \overline{p}_i - \alpha_i \sum_j \Delta \omega_j$$

where

$$\sum_{i} \alpha_{i} = 1, \quad \alpha \geq 0$$

 \sim primary + secondary control,

- $m{\mathcal{F}}=\mathsf{set}$ of renewable sources, e.g. wind farms
- $\Delta \omega_j$ = real-time fluctuation in output of renewable j (deviation from mean).

For each generator i, two parameters:

- $\overline{p_i} = \text{mean output}$
- lacktriangle α_i = response parameter ("participation factor")

Real-time output of generator i:

$$p_i = \overline{p}_i - \alpha_i \sum_j \Delta \omega_j$$

where

$$\sum_{i} \alpha_{i} = 1, \quad \alpha \geq 0$$

 \sim primary + secondary control, extends existing practice

Modeling risk: line limits and line tripping

If power flow in a line exceeds its limit, the line becomes compromised and may 'trip'. But process is complex and time-averaged:

- Thermal limit is most common
- Thermal limit may be in terms of terminal equipment, not line itself
- Wind strength and wind direction contributes to line temperature
- IEEE Standard 738 computes line temperature as a function of power flow and **numerous** exogenous parameters (wind, temperature, humidity, air pressure, date, time of day, latitude and longitude, ...)
- In 2003 U.S. blackout event, many critical lines tripped due to thermal reasons, but well short of their line limit

Modeling risk: line limits and line tripping

summary: exceeding limit for too long is bad, but precise model difficult

want: "fraction time a line exceeds its limit is small"

proxy: prob(violation on line pq) $< \epsilon_{pq}$

Computing line flows

wind power at bus i: $\mu_i + \mathbf{w}_i$

DC approximation

■
$$B\theta = \overline{p} - d$$

 $+(\mu + \mathbf{w} - \alpha \sum_{i \in G} \mathbf{w}_i)$

$$\bullet \theta = B^+(\bar{p} - d + \mu) + B^+(I - \alpha e^T)\mathbf{w}$$

flow is a linear combination of bus power injections:

$$\mathbf{f_{ij}} = \beta_{ij}(\boldsymbol{\theta}_i - \boldsymbol{\theta}_j)$$

Computing line flows

$$\mathbf{f}_{ij} = \beta_{ij} \left((B_i^+ - B_j^+)^T (\bar{p} - d + \mu) + (A_i - A_j)^T \mathbf{w} \right),$$
$$A = B^+ (I - \alpha e^T)$$

Given distribution of wind can calculate moments of line flows:

- $Ef_{ij} = \beta_{ij} (B_i^+ B_j^+)^T (\bar{p} d + \mu)$
- $var(\mathbf{f_{ij}}) := s_{ij}^2 \ge \beta_{ij}^2 \sum_k (A_{ik} A_{jk})^2 \sigma_k^2$ (assuming independence)
- and higher moments if necessary

Chance constraints to deterministic constraints

- lacktriangledown chance constraint: $P(\mathbf{f_{ij}} > f_{ij}^{max}) < \epsilon_{ij}$ and $P(\mathbf{f_{ij}} < -f_{ij}^{max}) < \epsilon_{ij}$
- from moments of f_{ij} , can get conservative approximations using e.g. Chebyshev's inequality

Chance constraints to deterministic constraints

- lacktriangledown chance constraint: $P(\mathbf{f_{ij}} > f_{ij}^{max}) < \epsilon_{ij}$ and $P(\mathbf{f_{ij}} < -f_{ij}^{max}) < \epsilon_{ij}$
- lacktriangleright from moments of f_{ij} , can get conservative approximations using e.g. Chebyshev's inequality
- \blacksquare for Gaussian wind, can do better, since f_{ij} is Gaussian :

$$|E\mathbf{f}_{ij}| + var(\mathbf{f}_{ij})\phi^{-1}(1 - \epsilon_{ij}) \le f_{ij}^{max}$$

Formulation:

Choose mean generator outputs and control to minimize expected cost, with the probability of line overloads kept small.

$$\begin{split} & \min_{\overline{p},\alpha} \mathbb{E}[c(\overline{p})] \\ \text{s.t.} & \sum_{i \in G} \alpha_i = 1, \ \alpha \geq 0 \\ & B\delta = \alpha, \delta_n = 0 \\ & \sum_{i \in G} \overline{p}_i + \sum_{i \in \mathcal{F}} \mu_i = \sum_{i \in D} d_i \\ & \overline{f}_{ij} = \beta_{ij} (\overline{\theta}_i - \overline{\theta}_j), \\ & B\overline{\theta} = \overline{p} + \mu - d, \ \overline{\theta}_n = 0 \\ & s_{ij}^2 \geq \beta_{ij}^2 \sum_{k \in \mathcal{F}} \sigma_k^2 (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \\ & |\overline{f}_{ij}| + s_{ij}\phi^{-1} (1 - \epsilon_{ij}) \leq f_{ij}^{max} \end{split}$$

Formulation:

Choose mean generator outputs and control to minimize expected cost, with the probability of line overloads kept small.

$$\begin{split} & \min_{\overline{p},\alpha} \mathbb{E}[c(\overline{p})] \\ \text{s.t.} & \sum_{i \in G} \alpha_i = 1, \ \alpha \geq 0 \\ & B\delta = \alpha, \delta_n = 0 \\ & \sum_{i \in G} \overline{p}_i + \sum_{i \in \mathcal{F}} \mu_i = \sum_{i \in D} d_i \\ & \overline{f}_{ij} = \beta_{ij} (\overline{\theta}_i - \overline{\theta}_j), \\ & B\overline{\theta} = \overline{p} + \mu - d, \ \overline{\theta}_n = 0 \\ & s_{ij}^2 \geq \beta_{ij}^2 \sum_{k \in \mathcal{F}} \sigma_k^2 (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \\ & |\overline{f}_{ij}| + s_{ii}\phi^{-1} (1 - \epsilon_{ii}) \leq f_{ii}^{max} \end{split}$$

A convex optimization problem.

■ Polish 2003-2004 winter peak case

- Polish 2003-2004 winter peak case
 - 2746 buses, 3514 branches, 8 wind sources

- Polish 2003-2004 winter peak case
 - 2746 buses, 3514 branches, 8 wind sources
 - 36625 variables
 - 38507 constraints, 6242 conic constraints
 - 128538 nonzeros, 87 dense columns

- Polish 2003-2004 winter peak case
 - 2746 buses, 3514 branches, 8 wind sources
 - 36625 variables
 - 38507 constraints, 6242 conic constraints
 - 128538 nonzeros, 87 dense columns
- Solvers (Cplex, Gurobi) cannot solve problem

- Polish 2003-2004 winter peak case
 - 2746 buses, 3514 branches, 8 wind sources
 - 36625 variables
 - 38507 constraints, 6242 conic constraints
 - 128538 nonzeros, 87 dense columns
- Solvers (Cplex, Gurobi) cannot solve problem
- $lue{}$ Specialized cutting-plane algorithm solves in ~ 30 seconds on normal computer

Conic constraint:

$$z \geq \sqrt{\sum_{i=1}^{n} x_i^2}$$

Conic constraint:

$$z \geq \sqrt{\sum_{i=1}^{n} x_i^2}$$

 $\tilde{x} \in \mathbb{R}^n$: a given vector

Conic constraint:

$$z \geq \sqrt{\sum_{i=1}^n x_i^2}$$

 $\tilde{x} \in \mathbb{R}^n$: a given vector

First-order approximation:

$$z \geq \frac{\sum_{i=1}^{n} \tilde{x}_{i} x_{i}}{\sqrt{\sum_{i=1}^{n} \tilde{x}_{i}^{2}}}$$

Conic constraint:

$$z \geq \sqrt{\sum_{i=1}^n x_i^2}$$

 $\tilde{x} \in \mathbb{R}^n$: a given vector

First-order approximation:

$$z \geq \frac{\sum_{i=1}^{n} \tilde{x}_{i} x_{i}}{\sqrt{\sum_{i=1}^{n} \tilde{x}_{i}^{2}}}$$

Soon to appear in SIAM Review

Need for robustness!

$$\begin{split} & \min_{\overline{p},\alpha} \mathbb{E}[c(\overline{p})] \\ \text{s.t.} & \sum_{i \in G} \alpha_i = 1, \ \alpha \geq 0 \\ & B\delta = \alpha, \delta_n = 0 \\ & \sum_{i \in G} \overline{p}_i + \sum_{i \in \mathcal{F}} \mu_i = \sum_{i \in D} d_i \\ & \overline{f}_{ij} = \beta_{ij} (\overline{\theta}_i - \overline{\theta}_j), \\ & B\overline{\theta} = \overline{p} + \mu - d, \ \overline{\theta}_n = 0 \\ & s_{ij}^2 \geq \beta_{ij}^2 \sum_{k \in \mathcal{F}} \sigma_k^2 (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \\ & |\overline{f}_{ij}| + s_{ij}\phi^{-1} (1 - \epsilon_{ij}) \leq f_{ij}^{max} \end{split}$$

1 We do not want to go crazy

- We do not want to go crazy
- 2 When data errors are **big** we want our solutions to degrade in a controlled manner

- We do not want to go crazy
- 2 When data errors are **big** we want our solutions to degrade in a controlled manner
- 3 When data errors are **small** we want our solutions to degrade **very little**

- We do not want to go crazy
- 2 When data errors are **big** we want our solutions to degrade in a controlled manner
- 3 When data errors are **small** we want our solutions to degrade **very little** from nominal behavior

Sensitivity to data errors?

$$\begin{split} s_{ij}^2 &\geq \beta_{ij}^2 \sum_{k \in \mathcal{F}} \sigma_{\mathbf{k}}^2 (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \\ &|\overline{f}_{ij}| + s_{ij} \phi^{-1} (1 - \epsilon_{ij}) \leq f_{ij}^{max} \end{split}$$

(the \overline{f}_{ij} implicitly incorporate the μ_i)

Sensitivity to data errors?

$$egin{aligned} s_{ij}^2 & \geq eta_{ij}^2 \sum_{k \in \mathcal{F}} \sigma_k^2 (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \ & |\overline{f}_{ij}| + s_{ij} \phi^{-1} (1 - \epsilon_{ij}) \leq f_{ij}^{max} \end{aligned}$$

(the \overline{f}_{ij} implicitly incorporate the μ_i)

What if the $\,\mu_{
m i}$ or the $\,\sigma_{
m k}$ are incorrect? ... What happens to

$$Prob(\mathbf{f_{ij}} > f_{ij}^{max})$$
?

Let the *correct* parameters be $\tilde{\mu}_i$, $\tilde{\sigma}_i$ for each farm i.

Theorem: Suppose there are parameters M > 0, V > 0 such that

$$|\bar{\mu}_i - \mu_i| < M\mu_i$$
 and $|\bar{\sigma}_i^2 - \sigma_i| < V\sigma_i$

for all i. Then:

Theorem: Suppose there are parameters M > 0, V > 0 such that

$$|\bar{\mu}_i - \mu_i| < M\mu_i$$
 and $|\bar{\sigma}_i^2 - \sigma_i| < V\sigma_i$

for all i. Then:

$$Prob(f_{ij} > f_{ij}^{max}) < \epsilon_{ij} + O(M) + O(V)$$

Theorem: Suppose there are parameters M > 0, V > 0 such that

$$|\bar{\mu}_i - \mu_i| < M\mu_i$$
 and $|\bar{\sigma}_i^2 - \sigma_i| < V\sigma_i$

for all i. Then:

$$Prob(f_{ij} > f_{ij}^{max}) < \epsilon_{ij} + O(M) + O(V)$$

Here, the O() "hides" some constants dependent on e.g. reactances

Theorem: Suppose there are parameters M > 0, V > 0 such that

$$|\bar{\mu}_i - \mu_i| < M\mu_i$$
 and $|\bar{\sigma}_i^2 - \sigma_i| < V\sigma_i$

for all i. Then:

$$Prob(f_{ij} > f_{ij}^{max}) < \epsilon_{ij} + O(M) + O(V)$$

Here, the O() "hides" some constants dependent on e.g. reactances

In other words, solution quality degrades "gracefully"

Robustness: small errors

Polyhedral data error model:

$$|\tilde{\sigma}_i^2 - \sigma_i^2| \le \gamma_i \ \forall i, \ \sum_i \frac{|\tilde{\sigma}_i^2 - \sigma_i^2|}{\gamma_i} \le \Gamma.$$

Ellipsoidal data error model:

$$(\tilde{\sigma}^2 - \sigma^2)^T A(\tilde{\sigma}^2 - \sigma^2) \leq b$$

Here $A \succeq 0$ and b > 0 are parameters.

Nominal case:

Nominal case:
$$|E \mathbf{f}_{ij}| + var(\mathbf{f}_{ij})\phi^{-1}(1 - \epsilon_{ij}) \leq f_{ij}^{max}$$

Nominal case:
$$|E \mathbf{f}_{ij}| + var(\mathbf{f}_{ij})\phi^{-1}(1 - \epsilon_{ij}) \leq f_{ij}^{max}$$

→ a conic constraint

Nominal case:
$$|E \mathbf{f}_{ij}| + var(\mathbf{f}_{ij})\phi^{-1}(1 - \epsilon_{ij}) \leq f_{ij}^{max}$$

→ a conic constraint

Robust case:
$$\max_{\mathcal{E}} \left\{ |E| \mathbf{f}_{ij}| + var(\mathbf{f}_{ij})\phi^{-1} (1 - \epsilon_{ij}) \right\} \leq f_{ij}^{max}$$

(\mathcal{E} : data error model)

Nominal case:
$$|E \mathbf{f}_{ij}| + var(\mathbf{f}_{ij})\phi^{-1}(1 - \epsilon_{ij}) \leq f_{ij}^{max}$$

→ a conic constraint

Robust case:
$$\max_{\mathcal{E}} \left\{ |E \mathbf{f}_{ij}| + var(\mathbf{f}_{ij})\phi^{-1}(1 - \epsilon_{ij}) \right\} \leq f_{ij}^{max}$$

(\mathcal{E} : data error model)

how to formulate?

Nominal case: $|E \mathbf{f}_{ij}| + var(\mathbf{f}_{ij})\phi^{-1}(1 - \epsilon_{ij}) \leq f_{ij}^{max}$

→ a conic constraint

Robust case: $\max_{\mathcal{E}} \left\{ |E| \mathbf{f}_{ij}| + var(\mathbf{f}_{ij})\phi^{-1}(1 - \epsilon_{ij}) \right\} \leq f_{ij}^{max}$

(\mathcal{E} : data error model)

how to formulate?

$$s_{ij}^2 \geq \beta_{ij}^2 \sum_{k \in \mathcal{F}} (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \sigma_{\mathbf{k}}^2$$

Nominal case: $|E \mathbf{f}_{ij}| + var(\mathbf{f}_{ij})\phi^{-1}(1 - \epsilon_{ij}) \leq f_{ij}^{max}$

→ a conic constraint

Robust case: $\max_{\mathcal{E}} \left\{ |E \mathbf{f}_{ij}| + var(\mathbf{f}_{ij})\phi^{-1}(1 - \epsilon_{ij}) \right\} \leq f_{ij}^{max}$

(\mathcal{E} : data error model)

how to formulate?

$$s_{ij}^2 \geq \beta_{ij}^2 \sum_{k \in \mathcal{F}} (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \sigma_{\mathbf{k}}^2$$

$$s_{ij}^2 \geq \max_{\{\sigma_k^2\} \in \mathcal{E}} \beta_{ij}^2 \sum_{k \in \mathcal{T}} (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \sigma_{\mathbf{k}}^2$$

Lemma: Let

$$U(\gamma,\Gamma) = \left\{ \sigma^2 \in \mathbb{R}_+^{\mathcal{F}} : |\sigma_i^2 - \bar{\sigma}_i^2| \leq \gamma_i \ \forall i \in \mathcal{F}, \ \sum_{i \in \mathcal{F}} \frac{|\sigma_i^2 - \bar{\sigma}_i^2|}{\gamma_i} \leq \Gamma \right\}.$$

Lemma: Let

$$U(\gamma,\Gamma) = \left\{ \sigma^2 \in \mathbb{R}_+^{\mathcal{F}} : |\sigma_i^2 - \bar{\sigma}_i^2| \leq \gamma_i \ \forall i \in \mathcal{F}, \ \sum_{i \in \mathcal{F}} \frac{|\sigma_i^2 - \bar{\sigma}_i^2|}{\gamma_i} \leq \Gamma \right\}.$$

Then

$$s_{ij}^2 \geq \max_{\{\sigma_k^2\} \in U(\gamma,\Gamma)} \beta_{ij}^2 \sum_{k \in \mathcal{F}} (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \sigma_{\mathbf{k}}^2 \tag{4}$$

is equivalent to:

Lemma: Let

$$U(\gamma,\Gamma) = \left\{ \sigma^2 \in \mathbb{R}_+^{\mathcal{F}} : |\sigma_i^2 - \bar{\sigma}_i^2| \leq \gamma_i \ \forall i \in \mathcal{F}, \ \sum_{i \in \mathcal{F}} \frac{|\sigma_i^2 - \bar{\sigma}_i^2|}{\gamma_i} \leq \Gamma \right\}.$$

Then

$$s_{ij}^2 \geq \max_{\{\sigma_k^2\} \in U(\gamma,\Gamma)} \beta_{ij}^2 \sum_{k \in \mathcal{F}} (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \sigma_{\mathbf{k}}^2 \tag{4}$$

is equivalent to:

$$s_{ij} \geq \left[\sum_{k \in \mathcal{F}} \bar{\sigma}_{k}^{2} (\pi_{ik} - \pi_{jk} - \delta_{i} + \delta_{j})^{2} + \Gamma a^{\{i,j\}} + \sum_{k \in \mathcal{F}} b_{k}^{\{i,j\}} \right]^{1/2}$$

$$(\pi_{ik} - \pi_{jk} - \delta_{i} + \delta_{j})^{2} - \frac{1}{\gamma_{k}} a^{\{i,j\}} - b_{k}^{\{i,j\}} \leq 0 \quad \forall k \in \mathcal{F}$$

$$b_{k}^{\{i,j\}} \geq 0 \quad \forall k \in \mathcal{F}; \quad a^{\{i,j\}} \geq 0.$$

Lemma: Let

$$U(\gamma,\Gamma) = \left\{ \sigma^2 \in \mathbb{R}_+^{\mathcal{F}} : |\sigma_i^2 - \bar{\sigma}_i^2| \leq \gamma_i \ \forall i \in \mathcal{F}, \ \sum_{i \in \mathcal{F}} \frac{|\sigma_i^2 - \bar{\sigma}_i^2|}{\gamma_i} \leq \Gamma \right\}.$$

Then

$$s_{ij}^2 \geq \max_{\{\sigma_k^2\} \in U(\gamma,\Gamma)} \beta_{ij}^2 \sum_{k \in \mathcal{F}} (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \sigma_{\mathbf{k}}^2 \tag{4}$$

is equivalent to:

$$s_{ij} \geq \left[\sum_{k \in \mathcal{F}} \bar{\sigma}_{k}^{2} (\pi_{ik} - \pi_{jk} - \delta_{i} + \delta_{j})^{2} + \Gamma a^{\{i,j\}} + \sum_{k \in \mathcal{F}} b_{k}^{\{i,j\}} \right]^{1/2}$$

$$(\pi_{ik} - \pi_{jk} - \delta_{i} + \delta_{j})^{2} - \frac{1}{\gamma_{k}} a^{\{i,j\}} - b_{k}^{\{i,j\}} \leq 0 \quad \forall k \in \mathcal{F}$$

$$b_{k}^{\{i,j\}} \geq 0 \quad \forall k \in \mathcal{F}; \quad a^{\{i,j\}} \geq 0. \quad \text{NOT CONVEX!}$$

4 D > 4 A > 4 E > 4 E > E 9040

But the original constraint IS convex!

$$s_{ij}^2 \geq \max_{\{\sigma_k^2\} \in \mathcal{E}} \beta_{ij}^2 \sum_{k \in \mathcal{F}} (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \sigma_{\mathbf{k}}^2$$
 (5)

But the original constraint IS convex!

$$s_{ij}^2 \geq \max_{\{\sigma_k^2\} \in \mathcal{E}} \beta_{ij}^2 \sum_{k \in \mathcal{E}} (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \sigma_{\mathbf{k}}^2$$
 (5)

Algorithm.

- **1.** Solve convex relaxation (initially: empty). Let δ^* be optimal.
- **2.** (For each line (i,j)) compute

$$\max_{\{\sigma_k^2\}\in\mathcal{E}}eta_{ij}^2\sum_{k\in\mathcal{F}}(B_{ik}^+-B_{jk}^+-\delta_i^*+\delta_j^*)^2\sigma_{\mathbf{k}}^2$$

which is a convex problem in the above cases.

But the original constraint IS convex!

$$s_{ij}^2 \geq \max_{\{\sigma_k^2\} \in \mathcal{E}} \beta_{ij}^2 \sum_{k \in \mathcal{F}} (B_{ik}^+ - B_{jk}^+ - \delta_i + \delta_j)^2 \sigma_{\mathbf{k}}^2$$
 (5)

Algorithm.

- **1.** Solve convex relaxation (initially: empty). Let δ^* be optimal.
- **2.** (For each line (i,j)) compute

$$\max_{\{\sigma_k^2\}\in\mathcal{E}}eta_{ij}^2\sum_{k\in\mathcal{F}}(B_{ik}^+-B_{jk}^+-\delta_i^*+\delta_j^*)^2\sigma_{\mathbf{k}}^2$$

which is a convex problem in the above cases. Let $\{\hat{\sigma}^2\}$ be optimal.

3. Linearize (5) around δ^* and $\{\hat{\sigma}^2\}$ (and add cut)

1 Covers multiple OPF planning intervals.

1 Covers multiple OPF planning intervals. m > 1 intervals.

- 1 Covers multiple OPF planning intervals. m > 1 intervals.
- 2 We will set the average operating point $\bar{p}_i^{(h)}$ for each generator i and (end of) interval h.

- 1 Covers multiple OPF planning intervals. m > 1 intervals.
- 2 We will set the average operating point $\bar{p}_i^{(h)}$ for each generator i and (end of) interval h. \rightarrow This allows us to model generator ramping.

- 1 Covers multiple OPF planning intervals. m > 1 intervals.
- 2 We will set the average operating point $\bar{p}_i^{(h)}$ for each generator i and (end of) interval h. \rightarrow This allows us to model generator ramping.
- **3** Each interval h split into $K \ge 1$ sub-intervals.

- **1** Covers multiple OPF planning intervals. m > 1 intervals.
- 2 We will set the average operating point $\bar{p}_i^{(h)}$ for each generator i and (end of) interval h. \rightarrow This allows us to model generator ramping.
- **3** Each interval h split into $K \ge 1$ sub-intervals.
- 4 Actual expected output of generator i at subinterval k of interval h:

$$\bar{p}_i^{(h,k)} = \frac{K-k}{K-1}\bar{p}_i^{(h)} + \frac{k-1}{K-1}\bar{p}_i^{(h+1)}$$

 $\alpha_i^{(h,k)}$ = participation factor for generator i at subinterval k, interval h.

- 1 Covers multiple OPF planning intervals. m > 1 intervals.
- 2 We will set the average operating point $\bar{p}_i^{(h)}$ for each generator i and (end of) interval h. \rightarrow This allows us to model generator ramping.
- **3** Each interval h split into $K \ge 1$ sub-intervals.
- 4 Actual expected output of generator i at subinterval k of interval h:

$$\bar{p}_i^{(h,k)} = \frac{K-k}{K-1}\bar{p}_i^{(h)} + \frac{k-1}{K-1}\bar{p}_i^{(h+1)}$$

 $\alpha_i^{(h,k)}$ = participation factor for generator i at subinterval k, interval h. Could be $\alpha_i^{(h)}$.

- 1 Covers multiple OPF planning intervals. m > 1 intervals.
- 2 We will set the average operating point $\bar{p}_i^{(h)}$ for each generator i and (end of) interval h. \rightarrow This allows us to model generator ramping.
- **3** Each interval h split into $K \ge 1$ sub-intervals.
- 4 Actual expected output of generator i at subinterval k of interval h:

$$\bar{p}_i^{(h,k)} = \frac{K-k}{K-1}\bar{p}_i^{(h)} + \frac{k-1}{K-1}\bar{p}_i^{(h+1)}$$

 $\alpha_i^{(h,k)}$ = participation factor for generator i at subinterval k, interval k. Could be $\alpha_i^{(h)}$. Or even α_i .

- 1 Covers multiple OPF planning intervals. m > 1 intervals.
- 2 We will set the average operating point $\bar{p}_i^{(h)}$ for each generator i and (end of) interval h. \rightarrow This allows us to model generator ramping.
- **3** Each interval h split into $K \ge 1$ sub-intervals.
- 4 Actual expected output of generator i at subinterval k of interval h:

$$\bar{p}_i^{(h,k)} = \frac{K-k}{K-1}\bar{p}_i^{(h)} + \frac{k-1}{K-1}\bar{p}_i^{(h+1)}$$

- $\alpha_i^{(h,k)}$ = participation factor for generator i at subinterval k, interval h. Could be $\alpha_i^{(h)}$. Or even α_i .
- **6** $\mathbf{d}_{i}^{(h)}$ = estimate for demand at bus *i* at interval *h*.

$$B\theta^{(h,k)}(\mathbf{t}) = \bar{p}^{(h,k)} + \mu^{(h,k)} - d^{(h)} + \omega(\mathbf{t}) - \left(\sum_{i} \omega_{i}(\mathbf{t})\right) \alpha^{(h)},$$

At (instantaneous) time t in subinterval k of interval h:

$$B\theta^{(h,k)}(\mathbf{t}) = \bar{p}^{(h,k)} + \mu^{(h,k)} - d^{(h)} + \omega(\mathbf{t}) - \left(\sum_{i} \omega_{i}(\mathbf{t})\right) \alpha^{(h)},$$

Random quantities in bold.

$$B\theta^{(h,k)}(\mathbf{t}) = \bar{p}^{(h,k)} + \mu^{(h,k)} - d^{(h)} + \omega(\mathbf{t}) - \left(\sum_{i} \omega_{i}(\mathbf{t})\right) \alpha^{(h)},$$

- Random quantities in bold.
- $\theta_i^{(h,k)}(t)$ = phase angle at bus i at time t.

$$B\theta^{(h,k)}(\mathbf{t}) = \bar{p}^{(h,k)} + \mu^{(h,k)} - d^{(h)} + \omega(\mathbf{t}) - \left(\sum_{i} \omega_{i}(\mathbf{t})\right) \alpha^{(h)},$$

- Random quantities in bold.
- $\theta_i^{(h,k)}(t) = \text{phase angle at bus } i \text{ at time } t.$
- lacksquare Output at farm $i=\mu_i^{(h,k)}+\omega_i(\mathbf{t})$

$$B\theta^{(h,k)}(\mathbf{t}) = \bar{p}^{(h,k)} + \mu^{(h,k)} - d^{(h)} + \omega(\mathbf{t}) - \left(\sum_{i} \omega_{i}(\mathbf{t})\right) \alpha^{(h)},$$

- Random quantities in bold.
- $\theta_i^{(h,k)}(t)$ = phase angle at bus i at time t.
- Output at farm $i = \mu_i^{(h,k)} + \omega_i(\mathbf{t})$ $(E\omega_i(\mathbf{t}) = 0, \ var(\omega_i(\mathbf{t})) = (\sigma_i^{(h)})^2)$

$$B\theta^{(h,k)}(\mathbf{t}) = \bar{p}^{(h,k)} + \mu^{(h,k)} - d^{(h)} + \omega(\mathbf{t}) - \left(\sum_{i} \omega_{i}(\mathbf{t})\right) \alpha^{(h)},$$

- Random quantities in bold.
- $\theta_i^{(h,k)}(t)$ = phase angle at bus i at time t.
- Output at farm $i = \mu_i^{(h,k)} + \omega_i(\mathbf{t})$ $(E\omega_i(\mathbf{t}) = 0, \ var(\omega_i(\mathbf{t})) = (\sigma_i^{(h)})^2)$
- Leads to conic formulation of multi-time-step chance-constrained problem

$$B\theta^{(h,k)}(\mathbf{t}) = \bar{p}^{(h,k)} + \mu^{(h,k)} - d^{(h)} + \omega(\mathbf{t}) - \left(\sum_{i} \omega_{i}(\mathbf{t})\right) \alpha^{(h)},$$

- Random quantities in bold.
- $\theta_i^{(h,k)}(t)$ = phase angle at bus i at time t.
- Output at farm $i = \mu_i^{(h,k)} + \omega_i(\mathbf{t})$ $(E\omega_i(\mathbf{t}) = 0, \ var(\omega_i(\mathbf{t})) = (\sigma_i^{(h)})^2)$
- Leads to conic formulation of multi-time-step chance-constrained problem

An imaginary situation:

■ The OPF dispatching periods are five minutes long; the planning horizon spans a total of three hours (36 intervals).

An imaginary situation:

- The OPF dispatching periods are five minutes long; the planning horizon spans a total of three hours (36 intervals).
- A weather disturbance (a set of storm cells) is expected to reach the geographical area under consideration at roughly the two-hour mark (i.e. at h=24). This disturbance will either affect the northern or the southern sectors of the grid.

An imaginary situation:

- The OPF dispatching periods are five minutes long; the planning horizon spans a total of three hours (36 intervals).
- A weather disturbance (a set of storm cells) is expected to reach the geographical area under consideration at roughly the two-hour mark (i.e. at h=24). This disturbance will either affect the northern or the southern sectors of the grid.
- Which of the two cases takes place will be known by the 1.5 hour mark (i.e. at h = 18).

An imaginary situation:

- The OPF dispatching periods are five minutes long; the planning horizon spans a total of three hours (36 intervals).
- A weather disturbance (a set of storm cells) is expected to reach the geographical area under consideration at roughly the two-hour mark (i.e. at h = 24). This disturbance will either affect the northern or the southern sectors of the grid.
- Which of the two cases takes place will be known by the 1.5 hour mark (i.e. at h = 18).

We can take advantage of the possibility of the recourse in the formulation

